\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [253]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 115 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+a*(2*A-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*se
c(d*x+c))^(1/2)+C*sin(d*x+c)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {4174, 4100, 3886, 221} \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {a (2 A-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}+\frac {\sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d} \]

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[a]*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*(2*A - C)*Sqrt[Sec[c + d*x]]*Sin[c
 + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]) + (C*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4174

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1
))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n +
 a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(
-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {\int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (2 A-C)+\frac {1}{2} a C \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{a} \\ & = \frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} C \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}-\frac {C \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.27 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {a \left (C \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+(C+2 A \cos (c+d x)) \sqrt {(-1+\cos (c+d x)) \sec ^2(c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(a*(C*ArcSin[Sqrt[1 - Sec[c + d*x]]] + (C + 2*A*Cos[c + d*x])*Sqrt[(-1 + Cos[c + d*x])*Sec[c + d*x]^2])*Tan[c
+ d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(224\) vs. \(2(101)=202\).

Time = 1.07 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.96

method result size
parts \(-\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d \sqrt {\sec \left (d x +c \right )}}+\frac {C \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-\cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )\right )}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(225\)
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (C \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+C \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+C \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+C \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+4 A \sin \left (d x +c \right )+2 C \tan \left (d x +c \right )\right )}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\sec \left (d x +c \right )}}\) \(299\)

[In]

int((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*A/d*(a*(1+sec(d*x+c)))^(1/2)/sec(d*x+c)^(1/2)*(cot(d*x+c)-csc(d*x+c))+1/2*C/d*sec(d*x+c)^(3/2)*(a*(1+sec(d*
x+c)))^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)*(arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1
/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-cos(d*x+c)^2*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos
(d*x+c)+1))^(1/2))+2*(-1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*sin(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 328, normalized size of antiderivative = 2.85 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\left [\frac {{\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (2 \, A \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {{\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (2 \, A \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

[In]

integrate((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x
+ c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 +
 cos(d*x + c)^2)) + 4*(2*A*cos(d*x + c) + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x
 + c)))/(d*cos(d*x + c) + d), 1/2*((C*cos(d*x + c) + C)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) + 2*(2*A*cos(d*x + c)
+ C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + C \sec ^{2}{\left (c + d x \right )}\right )}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + C*sec(c + d*x)**2)/sqrt(sec(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 684 vs. \(2 (101) = 202\).

Time = 0.49 (sec) , antiderivative size = 684, normalized size of antiderivative = 5.95 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(8*sqrt(2)*A*sqrt(a)*sin(1/2*d*x + 1/2*c) - (4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*
d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*a
rctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin
(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
 + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
+ 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c
))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2
*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arcta
n2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2
*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x +
c), cos(d*x + c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*C*sq
rt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/2), x)